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ABSTRACT

Keyword spotting enables content-based retrieval of scanned historical manuscripts using search terms,
which, in turn, facilitates the indexation in digital libraries. Recent approaches include graph-based
representations that capture the complex structure of handwriting. However, the high representational
power of graphs comes at the cost of high computational complexity for graph matching. In this article,
we investigate the potential of Hausdor↵ edit distance (HED) for keyword spotting. It is an e�cient
quadratic-time approximation of the graph edit distance. In a comprehensive experimental evaluation
with four types of handwriting graphs and four benchmark datasets (George Washington, Parzival,
Botany, and Alvermann Konzilsprotokolle), we demonstrate a strong performance of the proposed
HED-based method when compared with the state of the art, both, in terms of precision and speed.

c� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years we have seen increasing e↵orts worldwide
by libraries and archives to digitize handwritten historical doc-
uments. To integrate scanned manuscript images into digital
libraries based on their content, automatic handwriting recogni-
tion is needed. However, modeling and recognition of handwrit-
ing is far more challenging than optical character recognition
(OCR) for printed text, mainly due to the variable character
shapes. When facing ancient scripts and languages, automatic
transcription is often not feasible because of a lack of training
data. For such situations, keyword spotting (KWS) o↵ers an
alternative to index scanned manuscripts without performing a
complete transcription (Manmatha et al., 1996).

Two general approaches to keyword spotting can be dis-
tinguished, viz. template-based and learning-based methods.1
While template-based methods match one or several instances of
a keyword image directly with the scanned manuscript, learning-
based methods aim to learn word or subword models from la-

⇤⇤Corresponding author: Tel.:+1-514-848-2424x7248; fax: +1-514-848-
2830;

e-mail: mo_amer@encs.concordia.ca (Mohammad Reza Ameri)
1Another commonly used distinction related to the query type is query-by-

example and query-by-string. See for example (Almazan et al., 2014).

beled training samples. Examples include learning with hid-
den Markov models (HMM) (Perronnin and Rodrı́guez-Serrano,
2009; Fischer et al., 2012; Rothacker and Fink, 2015), support
vector machines (SVM) (Almazan et al., 2014), recurrent neu-
ral networks (RNN) (Frinken et al., 2012), and convolutional
neural networks (CNN) (Sudholt and Fink, 2016; Wilkinson and
Brun, 2016). In general, learning-based methods are able to
achieve a significantly better performance than template-based
methods. However, they are less flexible because they require a
considerable amount of labeled training data.

In this article, we focus on template-based methods, which
do not require any learning and can be applied even if only a
single template image of the keyword is provided to the spotting
system. This is particularly useful for historical manuscripts,
which typically require human experts for obtaining labeled
training data in a time-consuming and costly process.

Early approaches to template-based KWS include pixel-by-
pixel matchings of word images (Manmatha et al., 1996). Later
on, di↵erent feature descriptors have been investigated, in-
cluding projection profiles (Rath and Manmatha, 2007), his-
tograms of oriented gradients (HOG) (Rodrı́guez-Serrano and
Perronnin, 2008; Terasawa and Tanaka, 2009; Rusiñol et al.,
2015), and features extracted from unlabeled data by deep neu-
ral networks (Wicht et al., 2016), to name just a few. For coping
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Fig. 1. Process of graph-based keyword spotting of the word “October”.

with the variable width of the handwriting, a widely adopted
approach is to use a sliding window for extracting a sequence of
feature vectors from word images and match two sequences by
means of dynamic time warping (DTW) (Rath and Manmatha,
2007). To avoid an explicit segmentation of the scanned docu-
ment page into word images, segmentation-free methods have
been proposed as well (Rusiñol et al., 2015).

Two general limitations of feature vector descriptors relate
to their representational power. Firstly, they have to capture
the structure of handwriting with a fixed number of real-valued
features regardless of the complexity of the given instance. Sec-
ondly, they cannot represent binary relations between parts of the
handwriting in a straight-forward way. Both limitations can be
overcome by means of graph-based representations which model
parts of an object with nodes and relations between the parts
with edges (Conte et al., 2004). In recent work, several graph-
based methods have been proposed in the context of template-
based keyword spotting, using keypoints as nodes (Howe, 2013;
Wang et al., 2014b,a; Stau↵er et al., 2016b) or basic strokes as
nodes (Bui et al., 2015; Riba et al., 2015), and connecting them
with edges if there is a connection in the image.

The main drawback of graphs, however, is that their high
representational power comes at the cost of high computation
complexity. Most of the aforementioned methods for graph-
based keyword spotting use the well-known bipartite approxima-
tion (BP) (Riesen and Bunke, 2009) of the graph edit distance
(GED) (Bunke and Allermann, 1983). Although BP reduces the
NP-complete problem of GED to a polyomial-time assignment
problem, it still has a cubic time complexity with respect to the
graph size, which imposes significant computational constraints
for keyword spotting.

In this article, we investigate the potential of a recently in-
troduced more e�cient approximation of GED, namely the
Hausdor↵ edit distance (HED) (Fischer et al., 2015). It has
a quadratic time complexity with respect to the graph size – sim-
ilar to DTW, which has a quadratic time complexity with respect
to the sequence length. Unlike DTW, HED is not constrained to
sequence matching. Instead it is able to match arbitrary hand-
writing graphs without constraints as regards the graph structure
and the label alphabets for nodes and edges.

A preliminary version of this article has been published as an
extended abstract in the proceedings of the 18th International
Graphonomics Society Conference (IGS2017) (Ameri et al.,
2017). The present article substantially extends the conference

paper with a more detailed description and discussion of the
method, a more comprehensive experimental evaluation with
three additional benchmark datasets, a study on the combination
of HED and DTW, and an extended comparison with the current
state of the art. The main focus and contribution of the present
work is the graph matching method. For graph-based handwrit-
ing representation, we consider four types of handwriting graphs
introduced in earlier work (Stau↵er et al., 2016a).

In the remainder, we first describe the four graph-based hand-
writing representations in Section 2, introduce the HED-based
keyword spotting system in Section 3, present our experimental
evaluation on four benchmark datasets in Section 4, and con-
clude the article in Section 5 with an outlook on future lines of
research.

2. Handwriting Graphs

The proposed template-based keyword spotting approach
makes use of graphs for the representation and retrieval of word
images as illustrated in Figure 1. In the first step, handwrit-
ten document images are binarized and segmented into word
images (detailed in Section 2.1). Graphs are then extracted
from single word images by means of four di↵erent represen-
tations (see Section 2.2). Next, the graphs are normalized by a
z-score to minimize intraclass variations (see Section 2.3). Fi-
nally, keyword spotting is performed by computing all graph
dissimilarities (see Sections 3.1 and 3.2) between a certain query
graph q and all document graphs g 2 G to build a retrieval
index (see Section 3.3).

In the following sections, the first three steps are described
in greater detail, while the actual graph-based keyword spotting
method is detailed in Section 3.

2.1. Image Preprocessing
To remove noise, a Di↵erence of Gaussians edge enhancement

is first applied to scanned document images (Fischer et al., 2010).
Next, the locally enhanced document images are binarized by
means of global thresholding. As the proposed keyword spotting
framework operates on isolated word images, document images
are segmented into text lines and subsequently into words by
means of projection profiles. If necessary, the automatic segmen-
tation result is manually corrected. That is, segmentation errors
are neglected in the evaluation and the measured precision can be
seen as an upper bound on the end-to-end spotting performance.
Image preprocessing also includes a skew correction (Marti and
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Bunke, 2001), i.e. a correction of the inclination of the docu-
ment, which is applied at word-level. Optionally, word images
are skeletonized by means of a 3 ⇥ 3 thinning operator (Guo and
Hall, 1989). The binarized word images are denoted by B, while
skeletonized word images are denoted by S from now on.

2.2. Graph Extraction
A graph g is defined as a four-tuple g = (V, E, µ, ⌫) where V

and E are finite sets of nodes and edges, and µ : V ! LV as
well as ⌫ : E ! LE are labelling functions for nodes and edges,
respectively. Graphs can be divided into undirected and directed
graphs, where pairs of nodes are either connected by undirected
or directed edges. Additionally, graphs are often distinguished
into unlabeled and labeled graphs. In the latter case, both nodes
and edges can be labeled with an arbitrary numerical, vectorial,
or symbolic label from LV or LE , respectively. In the former
case we assume empty label alphabets, i.e. LV = LE = {}.

In the present work, we consider four types of graph represen-
tations that have been introduced by Stau↵er et al. (2016a). They
result in nodes that are labeled with two-dimensional numerical
labels, while edges remain unlabeled, i.e. LV = R2 and LE = {}.
Figure 2 illustrates the handwriting graphs for the manuscripts
used in our experimental evaluation (see Section 4.1). In the
following, we briefly describe the graph extraction procedures.
For a more detailed account, we refer to (Stau↵er et al., 2016a).
Keypoint. The first graph extraction algorithm makes use

of characteristics points (so-called keypoints) in skeletonized
word images S . These keypoints are represented as nodes that
are labeled with the corresponding (x, y)-coordinates. Between
pairs of keypoints (which are connected on the skeleton) further
intermediate points are converted to nodes and added to the
graph at equidistant intervals. Finally, undirected edges are
inserted into the graph for each pair of nodes directly connected
by a stroke.
Grid. The second graph extraction algorithm is based on a

grid-wise segmentation of binarized word images B into equally
sized segments. For each segment, a node is inserted into the
graph and labeled with the (x, y)-coordinates of its respective
center of mass. Undirected edges are inserted between two
neighboring segments that are actually represented by a node.
Finally, the inserted edges are reduced to the minimal spanning
tree.
Projection. The next graph extraction algorithm is com-

puted on the horizontal and vertical projection profiles of B. The
resulting segmentation is further refined in the horizontal and
vertical direction by means of two distance-based thresholds.
A node is inserted into the graph for each segment and labeled
by the (x, y)-coordinates of the corresponding center of mass.
Undirected edges are inserted into the graph for each pair of
nodes directly connected by a stroke in the original word image.
Split. The fourth graph extraction algorithm is based on

an iterative segmentation of binarized word images B. That
is, segments are iteratively split into smaller subsegments until
the width and height of all segments are below certain thresh-
olds. A node is inserted into the graph and labeled by the (x, y)-
coordinates of the point on the stroke closest to the center of
mass of each segment. For the insertion of the edges, the same
procedure as for Projection is applied.

2.3. Graph Normalization

To mitigate the influence of intraclass writing variations, the
resulting set of graphs is normalized with respect to the (x, y)-
coordinates of their node labels µ(v). Formally, we use a z-score
to derive normalized coordinates (x̂, ŷ) by

x̂ =
x � µx

�x
and ŷ =

y � µy

�y
,

where (µx, µy) and (�x,�y) are the mean and standard deviation
of all (x, y)-coordinates in the graph under consideration.

3. Graph-Based Keyword Spotting

For spotting keywords, a query graph q (used to represent
a certain keyword) is pairwise matched against all document
graphs G = {g1, . . . , gN}. Generally, graphs can either be
matched by means of exact or inexact approaches (Conte et al.,
2004; Foggia et al., 2014). In the case of graph-based KWS,
graphs are used to represent the inherent characteristic of hand-
writing, and thus, a↵ected by (subtle) variations in both their
structure and labels. For this reason, inexact graph matching can
be applied only.

3.1. Graph Edit Distance

Several approaches have been proposed for inexact graph
matching (Conte et al., 2004; Foggia et al., 2014). Yet, graph
edit distance (GED) is regarded as one of the most flexible and
powerful paradigms (Bunke and Allermann, 1983; Riesen, 2015).
In particular, GED measures the amount of distortion needed
to transform graph g1 into graph g2 using a sequence of edit
operations like insertions, deletions, and substitutions of both
nodes and edges (called edit path �(g1, g2) between g1 and g2).

To find the most suitable edit path, one commonly introduces
a certain cost function c(e) for every edit operation e. This cost
function should correspond to the strength of a certain graph
modification. Formally, the graph edit distance dGED(g1, g2), or
dGED for short, between g1 and g2 is given by

dGED(g1, g2) = min
�2⌥(g1,g2)

X

ei2�
c(ei) ,

where ⌥(g1, g2) is the set of all edit paths between g1 and g2.
For the representation of domain knowledge, one commonly

makes use of a certain cost model. Following the cost model
of (Stau↵er et al., 2016b), we use constant costs for both node
and edge deletions/insertions, i.e. ⌧v 2 R+ and ⌧e 2 R+. Unla-
beled edges are substituted without costs, i.e. c(p! q) = 0. For
the substitution of nodes (u ! v), we make use of a weighted
Euclidean distance between the corresponding node labels,

c(u! v) =
q
↵�x(xi � x j)2 + (1 � ↵)�y(yi � y j)2 ,

where ↵ 2 [0, 1] denotes a parameter to weight the importance
of the x- and y-coordinate of a node, while �x and �y denote the
standard deviation of all node coordinates in the current query
graph. Moreover, we make use of a weighting factor � 2 [0, 1]
between the node and edge edit costs.
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Fig. 2. Exemplary graph representations of the Alvermann Konzilsprotokolle (AK), Botany (BOT), George Washington (GW), and Parzival (PAR) dataset.

3.2. Hausdor↵ Edit Distance

The exact computation of dGED is exponential with respect to
the number of nodes of the involved graphs. Formally, GED is an
instance of a Quadratic Assignment Problem (QAP) (Koopmans
and Beckmann, 1957), which in turn belongs to the class of
NP-complete problems2. Hence, several fast but suboptimal
algorithms have been proposed in the last years (see (Foggia
et al., 2014)).

In this article, we consider the recently introduced Hausdor↵
edit distance (HED) (Fischer et al., 2015), which is a lower
bound of graph edit distance dHED  dGED that can be computed
in quadratic time with respect to the graph size. It reduces
the problem of graph edit distance to a set matching problem
between local substructures (nodes and their adjacent edges).

The Hausdor↵ edit distance dHED(g1, g2) between two graphs
g1 and g2 is formally defined as:

dHED(g1, g2) =
X

u2V1

min
v2V2[{✏}

f (u, v) +
X

v2V2

min
u2V1[{✏}

f (u, v) .

Similar to the Hausdor↵ distance between finite subsets of a met-
ric space, the two summation terms compute nearest neighbor
distances between the node sets according to the node function

f (u, v) =

8>>>>><
>>>>>:

⌧n +
P|P|

i=1
⌧e
2 for node deletion (u! ✏)

⌧n +
P|Q|

i=1
⌧e
2 for node insertion (✏ ! v)

c(u!v)+ dHED (P,Q)
2

2 for node substitution (u! v)

,

where P and Q are the set of edges adjacent to u and v, respec-
tively. Note that only half of the implied edge cost is added to
the node cost and only half of the substitution cost is considered
in general, to ensure the lower bound property.

The edge cost, which is implied by node substitution, is esti-
mated based on the edge sets P and Q with a similar Hausdor↵
matching function

dHED(P,Q) =
X

p2P
min

q2Q[{✏}
g(p, q) +

X

q2Q
min

p2P[{✏}
g(p, q)

2That is, an exact and e�cient algorithm for the graph edit distance problem
can not be developed unless P = NP .

according to the edge function

g(p, q) =

8>>>>><
>>>>>:

⌧e for edge deletion (p! ✏)
⌧e for edge insertion (✏ ! q)
c(p!q)

2 for edge substitution (p! q)

The underestimation of dHED  dGED is limited by a minimum
edit cost, which is ||V1|�|V2||·⌧n for dHED(g1, g2) and ||P|�|Q||·⌧e
for dHED(P,Q). For more details on HED, we refer to (Fischer
et al., 2015).

3.3. Keyword Spotting Score
For building the KWS score, the approximate graph edit dis-

tances dHED between query graph q and all document graphs
G = {g1, . . . , gN} is normalized by the maximum cost edit path
between q and gi, i.e. the cost of the edit path that results from
deleting all nodes and edges of q and inserting all nodes and
edges in gi. Formally,

r(q, g) = � dHED(q, gi)
(|Vq| + |Vgi |) ⌧v + (|Eq| + |Egi |) ⌧e

,

If a query consists of a graph collection Q = {q1, . . . , qt} that rep-
resents the same keyword (possibly in di↵erent writing styles),
the minimal distance is considered

r(Q, g) = min
q2Q

(r(q, g)) .

4. Experimental Evaluation

We evaluate the proposed HED-based method on four bench-
mark datasets for keyword spotting in historical manuscripts,
which are described in Section 4.1. We compare the performance
of the proposed method with three template-based reference
methods, namely BP, BP2, and DTW, all of which are detailed
in Section 4.2. Finally, we also put our method into context with
learning-based approaches to keyword spotting.

4.1. Datasets
For the experimental evaluation we consider two well

known manuscripts, viz. George Washington (GW)3 and Parzi-

3George Washington Papers at the Library of Congress, 1741-1799: Series
2, Letterbook 1, pp. 270-279 & 300-309, http://memory.loc.gov/ammem/
gwhtml/gwseries2.html
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val (PAR)4, as well as two documents of a very recent KWS
benchmark competition5, viz. Alvermann Konzilsprotokolle (AK)
and Botany (BOT). GW consists of letters of George Washington
and his associates during the American Revolutionary War in
1755. The letters are written in English and based on twenty
pages with minor variations in writing and degradation. PAR is
based on stories of the German poet Wolfgang von Eschenbach
in the 13th century. The manuscript is written in Middle High
German and based on 45 pages with low writing variations but
markable signs of degradation. AK consists of minutes of formal
meetings held by the central administration of the University of
Greifswald in the period of 1794 to 1797. The notes are written
in German and based on 18,000 pages with minor variations and
signs of degradation. Finally, BOT is based on botanical records
made in British India in the 18th and 19th century. The records
are written in English and based on ten pages with high writing
variation and markable signs of degradation.

On all four manuscripts, we extract graphs by means of the
graph representation formalisms proposed in Section 2. Note
that for AK and BOT, only the two most promising graph rep-
resentations (Keypoint and Projection) are considered. Fig-
ure 2 shows an exemplary word of each manuscript and the
corresponding graph representations.

4.2. Reference Methods
In order to assess the potential of the proposed HED-based

graph matching approach, we compare it with three related refer-
ence methods for matching graphs (BP and BP2) and sequences
(DTW), respectively.

BP. The first reference is the bipartite graph matching
method (BP) proposed by Riesen and Bunke (2009) for approxi-
mating the graph edit distance. It is widely used for graph-based
pattern recognition (for a survey, see (Stau↵er et al., 2017b)) and
has also been considered in a number of graph-based keyword
spotting systems, including (Wang et al., 2014b; Bui et al., 2015;
Riba et al., 2015; Stau↵er et al., 2016b, 2017a). BP reduces the
problem of graph edit distance to a linear sum assignment prob-
lem (LSAP) and returns a valid – but not necessarily optimal –
edit path between two graphs. The cost of this edit path gives an
upper bound of graph edit distance and can be used to compute
a spotting score. The main constraint of BP is its cubic time
complexity with respect to the graph size, which imposes com-
putational limits regarding the size of the handwriting graphs as
well as the number of handwriting graphs that can be matched.

BP2. The second reference is the recently introduced quadratic
time variant of BP called BP2 (Fischer et al., 2017). It solves
the bipartite matching problem in quadratic time and returns,
similar to BP, a valid edit path between two graphs and thus an
upper bound of graph edit distance.

4Parzival at IAM historical document database, http://www.fki.

inf.unibe.ch/databases/iam-historical-document-database/

parzival-database

5Alvermann Konzilsprotokolle and Botany at ICFHR2016 benchmark
database, http://www.prhlt.upv.es/contests/icfhr2016-kws/data.
html

Table 1. Number of keywords and number of word images in the training
and test sets of the four datasets.

Dataset Keywords Train Test

GW 105 2,447 1,224
PAR 1,217 11,468 6,869
BOT 150 1,684 3,380
AK 200 1,849 3,734

DTW. The third reference is the well-established Dynamic Time
Warping (DTW) method for sequence matching, which has often
been used for keyword spotting in historical manuscripts (Rath
and Manmatha, 2007; Terasawa and Tanaka, 2009; Frinken et al.,
2012; Wicht et al., 2016). By moving a sliding window over the
handwriting a sequence of feature vectors is extracted. DTW
finds an optimal alignment of two sequences along a common
time axis such that the sum of feature vector distances is minimal.
This sum of distances can then be used to compute a keyword
spotting score. Using dynamic programming, an optimal DTW
alignment can be obtained in quadratic time with respect to
the sequence length. Note that sequences are a special case of
graphs, in which the nodes are ordered and have at most one
successor.

4.3. Experimental Setup
On all benchmark datasets, individual word images are consid-

ered for experimental evaluation. The word segmentation is man-
ually corrected, hence the results obtained on these benchmarks
can be seen as an upper bound on the spotting performance. In
a real-world scenario, errors stemming from automatic word
segmentation may decrease the end-to-end performance.

Experiments are conducted in two stages. First, during the
validation stage, several system parameters are fine-tuned on
a small validation set, which consists of 10 random instances
of 10 manually selected keywords (with di↵erent word lengths)
and 900 additional, randomly selected words (1,000 words in
total). Secondly, during the testing stage, the optimized system
is evaluated on the same training and test sets as used in (Fischer
et al., 2012) for GW and PAR and (Pratikakis et al., 2016) for
AK and BOT. All templates of a keyword present in the training
set are used for keyword spotting. In Table 1 a summary of the
datasets is presented.

To evaluate the keyword spotting performance, we consider
Recall and Precision for each keyword query and compute
the Mean Average Precision (MAP) over all queries using the
trec eval

6 software.

4.4. Comparison with Graph Edit Distance Approximations
In the first experiment, we compare HED with other approx-

imation methods of graph edit distance, namely BP and BP2.
All three methods can be applied to any type of graph, without
constraints on the graph structure or the node and edge label
alphabets. The approximate graph edit distance is divided by the
maximum graph edit distance to derive a normalized keyword
spotting score, as described in Section 3.3.

6
http://trec.nist.gov/trec_eval
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Table 2. Mean average precision (MAP) for graph-based KWS systems on
the George Washington (GW) and Parzival (PAR) datasets.

GW PAR

Method MAP ± MAP ±
B

P
Keypoint 66.08 62.04
Grid 60.02 56.50
Projection 61.43 66.23
Split 60.23 59.44

B
P2

Keypoint 68.42 +2.33 55.03 �7.01
Grid 62.10 +2.07 57.00 +0.50
Projection 60.83 �0.60 63.35 �2.88
Split 64.24 +4.02 68.69 +9.25

H
ED

Keypoint 69.28 +3.19 69.23 +7.19
Grid 62.78 +2.75 60.74 +4.24
Projection 66.71 +5.28 72.82 +6.59
Split 65.12 +4.89 72.79 +13.35

Table 3. Mean average precision (MAP) for graph-based KWS systems on
the Botany (BOT) and Alvermann Konzilsprotokolle (AK) datasets.

BOT AK

Method MAP ± MAP ±

B
P Keypoint 45.06 77.24

Projection 49.57 76.02

B
P2 Keypoint 50.94 +5.88 74.86 �2.38

Projection 50.49 +0.92 75.46 �0.56

H
ED

Keypoint 51.74 +6.68 79.72 +2.48
Projection 51.69 +2.12 81.06 +5.04

We consider the four graph-based handwriting representa-
tions discussed in Section 2 and adopt optimal graph parameters
from previous work (Stau↵er et al., 2016a,b). Parameters of
the keyword spotting system include the cost for node dele-
tion/insertion ⌧n, the cost for edge deletion/insertion ⌧e, and
the weights ↵, � of the cost function (see Section 3.1). They
are optimized over the range of ⌧n, ⌧e 2 {1, 4, 8, 16, 32} and
↵, � 2 {0.1, 0.3, 0.5, 0.7, 0.9} for each method individually on the
validation set.

Table 2 presents the MAP results on the test set of GW and
PAR for the three methods and the four graph representations.
Confirming the observations in (Fischer et al., 2017), BP2 per-
forms very similar to BP, outperforming BP in five out of eight
cases. These results indicate that, in this scenario, the quadratic-
time BP2 method is not only significantly more e�cient than
the cubic-time BP method but it can also achieve similar perfor-
mance.

HED achieves the best results, outperforming BP in eight out
of eight cases. Hence, it not only allows to reduce the com-
putational complexity but also improves the keyword spotting
performance. Unlike BP and BP2, HED allows multiple as-
signments among substructures in the handwriting graphs. We
assume that this property of HED is beneficial in the context
of handwriting because it allows a kind of “warping” between
characters of di↵erent size, similar to DTW (see Section 4.2) but
in two dimensions rather than only one.

The results shown in Table 3 for the two other datasets, BOT
and AK, confirm the findings. On these datasets, HED outper-
forms BP in four out of four cases.

Finally, Table 4 reports the speedup that can be achieved with
the quadratic-time HED method when compared to the cubic-

Table 4. Median and maximum number of nodes, mean runtime per graph
pair in milliseconds for BP and HED, and speedup factor on the George
Washington (GW) dataset.

Method |V |med |V |max TBP THED Speedup

Keypoint 74 366 303.0 3.2 95.3
Grid 90 509 707.9 6.1 116.0
Projection 74 391 344.1 3.9 88.1
Split 80 434 480.2 4.4 108.1

Table 5. Mean average precision (MAP) for graph-based KWS systems in
comparison with three template-based reference systems on the George
Washington (GW) and Parzival (PAR) dataset. The first, second, and third
best systems are indicated by (1), (2), and (3).

Method GW PAR Average

Reference (Template) DTW’08 63.39 47.52 55.46
DTW’09 64.80 73.49 (1) 69.15 (3)
DTW’16 68.64 (2) 72.38 (3) 70.51 (2)

Graph (Template) BP 66.08 66.23 66.16
BP2 68.42 (3) 68.69 68.55
HED 69.28 (1) 72.82 (2) 71.05 (1)

time BP method. On the GW dataset, the handwriting graphs
have a median size between 74 and 90 and a maximum size
between 366 and 509. For this graph size, HED-based keyword
spotting is about hundred times faster than BP-based keyword
spotting.

Note that the BP reference method has also been used in the
context of other handwriting graphs, including graphs based
on keypoints labeled with their shape context (Wang et al.,
2014b), graphs based on graphemes extracted from shape con-
vexities (Riba et al., 2015), and graphs based on invariants cor-
responding to prototypical strokes (Bui et al., 2015). These
systems achieve comparable spotting results on a qualitative
level7 and can potentially profit from the proposed HED-based
approach as an alternative to BP-based graph matching.

4.5. Comparison with Dynamic Time Warping
Table 5 shows a comparison with the state of the art for

template-based keyword spotting using DTW. Three refer-
ence methods are considered for the GW and PAR benchmark
datasets. DTW’08 (Rodrı́guez-Serrano and Perronnin, 2008)
and DTW’09 (Terasawa and Tanaka, 2009) employ SIFT-like
gradient features, while DTW’16 (Wicht et al., 2016) is based
on convolutional neural network (CNN) features that are ex-
tracted from the datasets without supervision (without labeled
training data) using deep belief networks. All results are taken
from Wicht et al. (2016). For HED, we show the results for
the best performing graph representations found in Section 4.4,
which in most cases is Keypoint.

The results indicate that the template-based keyword spot-
ting methods achieve performance results in the same ballpark.
DTW’09 and DTW’16 tend to outperform BP and BP2, while
HED achieves the overall best results on these benchmarks.

The strong performance of HED is rather astonishing when
comparing the sophisticated CNN features of DTW’16 with

7A direct quantitative comparison is not feasible due to di↵erent experimental
conditions.
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Table 6. Mean average precision (MAP) for the combination of DTW and
HED on the George Washington (GW) and Parzival (PAR) datasets.

Method GW PAR

Individual DTW 64.00 71.74
HED 69.28 72.82

Combined DTW+HED 77.83 +8.55 77.00 +4.18

the relatively simple coordinate labels used for the handwriting
graphs. It underlines the representational power of graphs for
capturing relevant structures of the handwriting.

Regarding runtime, HED has a quadratic time complexity with
respect to the graph size and DTW has a quadratic time com-
plexity with respect to the sequence length. In our experimental
setting, the graph size is typically smaller than the sequence
length. On the GW dataset, for example, the median graph size
is 74, while the median sequence length is 134. In this scenario,
HED also reduces the computational e↵ort when compared with
DTW.

4.6. Combination of HED and Dynamic Time Warping

In the next experiment, we investigate the potential of combin-
ing HED and DTW. Since the two methods are quite di↵erent,
one matching two-dimensional graphs and the other matching
one-dimensional sequences, they have complementary proper-
ties and thus a high potential to support each other in a multiple
classifier system (MCS). In such an MCS setting, ideally, one
method is able to correct errors of the other method (Kuncheva,
2004).

We have implemented our own DTW reference method, fol-
lowing the general ideas of Rath and Manmatha (2007) and
using the features proposed by Marti and Bunke (2001). Im-
age preprocessing includes skew and slant correction as well as
height and width normalization. Afterwards, a sliding window
of one pixel width extracts a sequence of nine geometric fea-
tures. They are aligned by means of DTW using a Sakoe-Chiba
band (Sakoe and Chiba, 1978) with a width of ⌦ percent to
speedup the alignment and to exclude unusual warping paths.
The parameter ⌦ is optimized on the validation set over a range
of ⌦ 2 {0.20, 0.25, . . . , 0.70}. The resulting cost of the warping
path is normalized with the length of the warping path to obtain
a keyword spotting score. This DTW system achieves a MAP of
64.00 on GW and 71.74 on PAR, which is comparable with the
other reference methods listed in Table 5.

After normalizing the HED and the DTW scores to zero mean
and unit standard deviation, they are combined with a weighted
sum hed + ! · dtw. The weight ! is optimized on the validation
set over a range of ! 2 {0.1, 0.2, . . . , 2.0}.

Table 6 reports the combination result on the GW and PAR
test sets. Although DTW has a lower performance than HED, the
combination leads to a significant increase in MAP by 8.55% and
4.18%, respectively, emphasizing the complementary properties
of the two methods.

4.7. Comparison with Learning-Based Keyword Spotting

Our proposed HED method follows the template-based ap-
proach to keyword spotting, which has minimum requirements

Table 7. Mean average precision (MAP) for graph-based KWS systems in
comparison with three state-of-the-art learning-based reference systems on
the Alvermann Konzilsprotokolle (AK) and Botany (BOT) datasets. The
first, second, and third best systems are indicated by (1), (2), and (3).

Method BOT AK Average

Reference (Learning) CVCDAG 75.77 (2) 77.91 76.84 (2)
PRG 89.69 (1) 96.05 (1) 92.87 (1)
QTOB 54.95 (3) 82.15 (2) 68.55 (3)

Graph (Template) BP 49.57 77.24 63.41
BP2 50.94 75.46 63.20
HED 51.74 81.06 (3) 66.40

regarding human interaction. Even if only a single template
image of the keyword is provided to the system, it can search
for it in a collection of scanned documents without requiring
a human to annotate part of the collection. The low require-
ments of template-based keyword spotting are especially useful
in the context of historical manuscripts, where obtaining labeled
training data often requires human experts and thus becomes
time-consuming and costly.

However, if labeled training data can be made available to
the system, learning-based approaches can profit from this
knowledge and build more robust spotting systems. In Ta-
ble 7, we compare our proposed template-based method with
recent learning-based methods from the ICFHR2016 competi-
tion (Pratikakis et al., 2016), viz. CVCDAG (Almazan et al.,
2014), PRG (Sudholt and Fink, 2016), and QTOB (Wilkinson
and Brun, 2016). CVCDAG is based on Pyramidal Histogram
Of Characters (PHOC) features in conjunction with an SVM,
PRG is based on the same features in conjunction with a Convo-
lutional Neural Network (CNN), called PHOCNet, and QTOB
is based on another CNN following a triplet network approach.

As expected, the learning-based methods achieve a higher
performance in general and especially PRG significantly out-
performs the proposed HED-based method. Nevertheless, it is
interesting to observe that HED can keep up with the perfor-
mance of QTOB and outperforms CVCDAG in one out of three
cases, despite the fact that no learning has been performed for
HED. This observation demonstrates the high potential of HED
as a template-based keyword spotting method.

Note that template-based and learning-based methods have
complementary properties and can be used together in the diti-
talization process of historical manuscripts. At the beginning,
when no labeled data is available, template-based method can be
used to cluster similar words that are then labeled conjointly and
e�ciently by a human expert. As soon as enough training sam-
ples become available, learning-based methods can be trained to
perform a more accurate search. Finally, when enough labeled
data is available to train robust character models, a full transcrip-
tion can be attempted together with a word dictionary (Frinken
et al., 2014).

5. Conclusion and Outlook

The HED-based keyword spotting approach presented in this
article has demonstrated several promising properties. First, it
approximates the graph edit distance and hence is flexible in the
sense that it allows to represent handwriting with any type of
graph, without constraints on the graph structure or the label
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alphabets for nodes and edges. Secondly, it can be computed in
quadratic time with respect to the graph size and hence is e�cient
for matching large graphs and large numbers of graphs. Thirdly,
the experimental evaluation on four benchmark datasets for
keyword spotting in historical manuscripts has demonstrated that
it is e↵ective in terms of mean average precision and compares
favourably with other template-based keyword spotting systems.

Unlike dynamic time warping, which considers handwrit-
ing as a sequence of feature vectors, HED considers the two-
dimensional global structure of the handwriting. The two per-
spectives are di↵erent and complementary, which could be
demonstrated by combining the two methods into a multiple
classifier system that outperformed the individual methods.

There are several promising lines of future research. First,
it would be interesting to investigate other, potentially more
abstract graph-based representations of handwriting. Secondly,
it may be rewarding to include more information about the
global handwriting structure when matching local substructures
with HED. Finally, given labeled training data is available, an
intriguing open question is how to perform machine learning
on graph-based representations and graph matching in order to
profit from the labeled data.
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