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Abstract

In the last decades historical handwritten documents have become in-
creasingly available in digital form. Yet, the accessibility to these documents
with respect to browsing and searching remained limited as full automatic
transcription is often not possible or not sufficiently accurate. This paper
proposes a novel reliable approach for template-based keyword spotting in
historical handwritten documents. In particular, our framework makes use of
different graph representations for segmented word images and a sophisticated
matching procedure. Moreover, we extend our method to a spotting ensemble.
In an exhaustive experimental evaluation on four widely used benchmark
datasets we show that the proposed approach is able to keep up or even
outperform several state-of-the-art methods for template- and learning-based
keyword spotting.
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1. Introduction

In order to bridge the gap between availability and accessibility of ancient
handwritten documents handwriting recognition is often employed for an
automatic and complete transcription. In the case of historical documents
this process is inherently an offline task, and as such, more complex than
online handwriting recognition where temporal information is available [1].
Moreover, the recognition rates of handwriting recognition systems applied
to ancient documents is often negatively affected by both the degenerative
conservation state of scanned documents [2] and different writing styles [3].

In order to overcome the prior obstacles of automatic full transcriptions
of historical handwritten documents, Keyword Spotting (KWS) as a more
error-tolerant, flexible, and suitable approach has been proposed [4–7]. KWS
refers to the task of retrieving any instance of a given query word in a
certain document. The concept of KWS was originally proposed for speech
documents [8] and later adapted for printed [9] and handwritten documents [4].

To date, KWS is still highly relevant in different application domains. This
is particularly due to the global trend towards digitalisation of paper-based
archives and libraries in both private and public institutions. Clearly, KWS
techniques can make these documents accessible for searching and browsing [5].
Similar to handwriting recognition, textual KWS can be divided into online
and offline KWS. The focus of this paper is on historical documents, and
thus, offline KWS, referred to as KWS from now on, can be applied only.

Most of the KWS methodologies available are based on template-based
or learning-based algorithms (similar to the corresponding subfields in hand-
writing recognition). Early approaches of template-based KWS are based
on pixel-by-pixel matchings of word images [4] by either Euclidean distance
measures or affine transformations by the Scott and Longuet-Higgins algo-
rithm [10]. More elaborated and error-tolerant approaches to template-based
KWS are based on the matching of feature vectors that numerically describe
certain characteristics of the word images like projection profiles [5, 11, 12],
gradients [11], contours [13], or geometrical characteristics [14]. Also more
generic image feature descriptors have been used like Histograms of Ori-
ented Gradients [15–17], Local Binary Patterns [17, 18], or Deep Learning
features [19], to name just a few. Regardless the features actually employed,
Dynamic Time Warping (DTW) is the most frequently used algorithm for
matching two sequences of features in KWS [12–16, 19, 20].

Learning-based KWS is based on statistical models that have to be trained
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a priori on a (relatively large) training set of word or character images.
Many approaches of learning-based KWS are based on Hidden Markov Mod-
els (HMM) [6, 7, 21–26]. Early approaches are based on generalised Hidden
Markov Models that are trained on character images, i.e. images of Latin [21]
or Arabic [23] characters. However, character-based approaches are nega-
tively affected by an error-prone segmentation step [7]. More elaborated
approaches rely on feature vectors of word images [22], for example by means
of Continuous-HMM [6] or Semi-Continuous-HMM [6], i.e. HMMs with a
shared set of Gaussian Mixture Models. Furthermore, the use of a Fisher
Kernel has been employed in conjunction with HMMs in [24], while a line-
based and lexicon-free HMM-approach is proposed in [7]. Recently, HMMs
have been used in combination with Bag-of-Features [25] or Deep Neural
Networks [26].

Further learning-based approaches are based on Recurrent Neural Net-
works [20, 27], Support Vector Machines (SVM) [28–30], or Latent Semantic
Analysis [31–33]. Moreover, we observe a clear shift towards Convolutional
Neural Network (CNN) in the last years [34–38]. In most cases, CNNs are
used to learn a certain word string embedding like Pyramid Histogram of
Characters (PHOC) [35–38] or Discrete Cosine Transform of Words [36–38]
that allows the retrieval of visual and textual queries in the same feature
space.

It is known that template-based matching algorithms generally result in a
lower recognition accuracy when compared to learning-based approaches. Yet,
this advantage is accompanied by a loss of flexibility, which is due to the need
for learning the parameters of the actual model. In particular, learning-based
methods are depending on the acquisition of labelled training data by means
of human experts. This is a costly and time-intensive process, especially in
case of handwritten historical documents. In contrast with learning-based
approaches, template-based algorithms are independent from both the actual
representation formalism and the language of the underlying document. Thus,
only a single instance of a keyword image is needed for the whole retrieval
process.

1.1. Related Work

The vast majority of KWS algorithms are based on statistical representa-
tions of words by certain numerical features (regardless whether template- or
learning-based approaches are used). However, in recent years a clear ten-
dency towards structural pattern representation formalisms can be observed
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in various domains [39, 40]. Structural Pattern Recognition is based on more
sophisticated data structures than feature vectors such as strings, trees, or
graphs (whereby strings and trees can be seen as special cases of graphs).
Graphs are, in contrast with feature vectors, flexible enough to adapt their
size to the size and complexity of individual patterns. Moreover, graphs are
capable to represent binary relationships that might exist in different subparts
of the underlying patterns.

In the last four decades various procedures for evaluating the dissimilarity
of graphs, commonly known as graph matching, have been proposed [41, 42].
Although graphs gained noticeable attention in various fields, we observe
only limited attempts where graphs have been used for the analysis and
recognition of handwriting [43–45]. This is particularly interesting as graphs
offer a natural and comprehensive way to represent handwritten characters
or words. Moreover, in the last decade substantial progress has been made in
speeding up different graph matching algorithms [42]. These facts build the
main motivation of the present paper that researches the benefits of graph
and template-based KWS.

A first approach to graph-based KWS has been proposed in [43], where
certain keypoints are represented by nodes, while edges are used to represent
strokes between these keypoints. The matching of words is then based
on two separate procedures. First, assignment costs between all pairs of
connected components (represented by graphs) are computed by means of a
bipartite graph matching algorithm [46]. Second, optimal assignment costs
between all pairs of connected components are found by means of a DTW
implementation. The same matching procedure is improved by a so-called
coarse-to-fine approach in [47].

Another framework for graph-based KWS has been introduced in [44],
where nodes represent prototype strokes (so-called invariants), while edges
are used to connect nodes which stem from the same connected component.
The same matching procedure as in [47] is finally used for computing graph
dissimilarities.

A third graph-based KWS approach has been proposed in [45], where
nodes represent prototype stokes (so-called graphemes), while edges are used
to represent the connectivity between graphemes. The matching is based on a
coarse-to-fine approach. Formally, potential subgraphs of the query graph are
determined first. These subgraphs are subsequently matched against a query
graph by means of a similar graph matching procedure as used in [44, 46, 47].
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1.2. Contribution

In the present paper we employ four novel approaches for the representation
of handwritten words by means of graphs. A first approach is based on
the representation of characteristic points by nodes, while edges represent
strokes between these points. Another approach is based on a grid-wise
segmentation of word images, where each segment is eventually represented
by a node. Finally, two representation formalisms are based on vertical and
horizontal segmentations of word images by means of projection profiles. For
matching graphs we adopt the concept of graph edit distance which can be
approximated in cubic time complexity by means of the Bipartite graph edit
distance algorithm [46].

When compared to existing graph-based KWS approaches [43–45], the
present approach distinguishes manifold. First, our graph representations
results in a single graph for every word image. Hence, no additional assignment
between graphs of different connected components is necessary during the
matching process. Second, no prototype library (as used in [44, 45]) is
necessary for our graph representations. Thus, the risk of losing the main
characteristics of handwriting is mitigated in our approach. Last but not least,
besides single matchings we make use of ensemble methods [48] to combine
the graph dissimilarities resulting from the the different graph representations.

The present article combines several lines of research and substantially
extends three preliminary conference papers [49–51]. Moreover, in the em-
pirical evaluation we use two additional datasets of a very recent KWS
benchmark [52] and thoroughly present and discuss the evaluation of all
parameters.

The remainder of this paper is organised as follows. In Section 2 and 3,
the proposed graph-based KWS approach is introduced. An experimental
evaluation against template- and learning-based reference systems is given in
Section 4. Finally, Section 5 concludes the paper and outlines possible future
research activities.

2. Graph-based Word Representation

The proposed system for KWS is based on representing ancient handwrit-
ten documents by means of a set of single word images, which are in turn
represented by graphs. Thus, a keyword can be retrieved in a document by
matching a corresponding query graph against the complete set of document
graphs. More formally, a specific graph matching algorithm computes the
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dissimilarities between the questioned keyword graph and all document graphs.
Based on these graph dissimilarities a retrieval index can be derived. In the
best case, this index represents all n instances of a given keyword as the final
top-n results.

The proposed KWS system includes four basics steps (illustrated in
Fig. 1). During the image preprocessing (1) the original document images are
processed in order to minimise the influence of variations that are caused, for
instance, by noisy backgrounds, skewed scanning, or document degradation.
Subsequently, the preprocessed document images are automatically segmented
into word images. On the basis of this particular word images, graphs are
extracted by means of different graph extraction algorithms (2) and eventually
normalised (3). Finally, the query graphs are matched with all document
graphs. The resulting graph dissimilarities can either be used directly to
compute the retrieval index, or they can be combined by means of different
ensemble methods in order to create a retrieval index (4).

In the following subsections the first three steps are described in greater
detail. In Subsection 2.1 we describe the image preprocessing and the word
segmentation algorithm that are actually used. Subsection 2.2 introduces a
unique arsenal of algorithms to extract graphs from word images. Finally,
Subsection 2.3 covers the step of graph normalisation. The graph matching
algorithm and ensemble methods for word graphs are thoroughly introduced
in a separate section (Section 3).

Document

2.1) Image
Preprocessing

2.2) Graph
Representation

3) Graph Matching

Words Graphs Gi Query Graph q Retrieval Index

… ……

1

2

3

… n

Figure 1: Process of graph-based keyword spotting of the word “October”.

2.1. Image Preprocessing

Image preprocessing basically aims at reducing undesirable variations
which are due to different writers (i.e. interpersonal variations), as well as due
to the digitised document itself (e.g. pixel noise, skewed scanning, or general
degradation of the document). In our particular case, the preprocessing is
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focused on the latter problem as variations in the writing style are minimised
by graph normalisation in one of the next steps (see Section 2.3).

The first preprocessing step locally enhances edges by a Difference of
Gaussians in order to address the issue of noisy background [53]. Next,
document images are binarised by a global threshold. In the present paper
we focus on KWS that operates on perfectly segmented word images. Thus,
single word images are first automatically segmented based on projection
profiles. Next, the segmentation result is manually inspected and, if necessary,
manually corrected1. Moreover, the skew, i.e. the inclination of the document,
is estimated on the lower baseline of a line of text and then corrected on
single word images [14]. Finally, binarised and normalised word images are
skeletonised by a 3× 3 thinning operator [54]. We denote segmented word
images that are binarised by B. If the image is additionally skeletonised we
use the term S from now on.

2.2. Graph Representation

On the basis of segmented, binarised, and possibly skeletonised word
images, we define four graph representation formalisms that are built via
graph extraction algorithms. These graph extraction algorithms aim at
representing certain characteristics of a word image by means of a graph.

A graph g is defined as a four-tuple g = (V,E, µ, ν) where V and E are
finite sets of nodes and edges, and µ : V → LV as well as ν : E → LE are
labelling functions for nodes and edges, respectively. Graphs can be divided
into undirected and directed graphs, where pairs of nodes are either connected
by undirected or directed edges, respectively. Additionally, graphs are often
distinguished into unlabelled and labelled graphs. In the latter case, both
nodes and edges can be labelled with an arbitrary numerical, vectorial, or
symbolic label from Lv or Le, respectively. In the former case we assume
empty label alphabets, i.e. Lv = Le = {}. For all of our graph representations
to be defined in the following four subsection, nodes are labelled with two-
dimensional numerical labels, while edges remain unlabelled, i.e. LV = R2

and LE = {}.
In the following paragraphs four graph representation formalisms (so-called

graph extraction algorithms) as well as their corresponding parameters (see

1The present KWS approach neglects any segmentation errors and can therefore be
seen as an upper-bound solution.
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Table 1) are introduced. For further details and a more thorough introduction
we refer to [49].

• Keypoint: The first graph extraction algorithm makes use of keypoints
in skeletonised word images S such as start, end, and junction points.
These keypoints are represented as nodes that are labeled with the
corresponding (x, y)-coordinates. Between pairs of keypoints (which are
connected on the skeleton) further intermediate points are converted
to nodes and added to the graph at equidistant intervals D. Finally,
undirected edges are inserted into the graph for each pair of nodes that
is directly connected by a stroke.

• Grid: The second graph extraction algorithm is based on a grid-wise
segmentation with of binarised word images B into equally sized seg-
ments of width w and height h. For each segment, a node is inserted into
the graph and labeled by the (x, y)-coordinates of the centre of mass of
this segment. Undirected edges are inserted between two neighbouring
segments that are actually represented by a node. Finally, the inserted
edges are reduced by means of a Minimal Spanning Tree algorithm [55].

• Projection: The next graph extraction algorithm works in a similar
way as Grid. However, rather than a static grid this method is based
on an adaptive and threshold-based segmentation of binarised word
images B. Basically, this segmentation is computed on the horizontal
and vertical projection profiles of B. The resulting segmentation is
further refined in the horizontal and vertical direction by means of two
distance thresholds Dh and Dv, respectively. A node is inserted into
the graph for each segment and labeled by the (x, y)-coordinates of the
corresponding centre of mass. Undirected edges are inserted into the
graph for each pair of nodes that is directly connected by a stroke in
the original word image.

• Split: The fourth graph extraction algorithm is based on an iterative
segmentation of binarised word images B. That is, segments are itera-
tively split into smaller subsegments until the width and height of all
segments are below certain thresholds Dw and Dh, respectively. A node
is inserted into the graph and labeled by the (x, y)-coordinates of the
point closest to the centre of mass of each segment. For the insertion of
the edges, a similar procedure as for Projection is applied.
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Table 1: Parameters of the four graph extraction algorithms.

Method Parameter

Keypoint D = Distance threshold
Grid w = Segment width h = Segment height
Projection Dv = Vertical threshold Dh = Horizontal threshold
Split Dw = Width threshold Dh = Height threshold

2.3. Graph Normalisation

In order to improve the comparability between graphs of the same word
class, the labels µ(v) of the nodes v ∈ V are normalised. In our case the
node label alphabet is defined by Lv = R2. We aim to reduce variations
caused by position and size of the underlying word images. In particular, the
(x, y)-coordinates of each node label µ(v) = (x, y) ∈ R2 are centralised and
scaled. Formally, we compute

x̂ =
x− µx
σx

and ŷ =
y − µy
σy

,

where x̂ and ŷ denote the new node coordinates, while x and y denote the
original node position. The value pairs (µx, µy) and (σx, σy) represent the
means and standard deviations of all (x, y)-coordinates in the graph under
consideration.

3. Matching Word Graphs

For spotting keywords, a query graph q (used to represent a certain
keyword) is pairwise matched against all graphs G = {g1, . . . , gN} stemming
from the underlying document. Basically, graphs can either be matched with
exact or inexact methods [41, 42]. In case of exact graph matching, it is
verified whether two graphs are identical (isomorphic) with respect to both
their structure and labels. In our application graphs that represent the same
word class might have (subtle) variations in their structure and their labelling
making exact graph matching not feasible. Hence, we focus on inexact graph
matching.

In the following three paragraphs the concept of using inexact graph
matching for KWS is thoroughly discussed. In Subsection 3.1, the inexact
graph matching paradigm of Graph Edit Distance (GED), as well as a fast,
yet suboptimal algorithm for this particular distance model is discussed.
A selection of ensemble methods based on different graph dissimilarities is
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introduced in Subsection 3.2. Finally, Subsection 3.3 explains how graph
dissimilarities are transformed into a retrieval index for KWS.

3.1. Inexact Graph Matching by means of Graph Edit Distance (GED)

Inexact graph matching allows matchings between two non-identical graphs
by endowing the matching process with a certain error-tolerance with respect
to labels and structure. Several approaches for inexact graph matching have
been proposed [41, 42]. Yet, GED is widely accepted as one of the most
flexible and powerful paradigms available [56].

Given two graphs, the source graph g1 = (V1, E1, µ1, ν1) and the target
graph g2 = (V2, E2, µ2, ν2), the basic idea of graph edit distance is to transform
g1 into g2 using some edit operations. A standard set of edit operations is
given by insertions, deletions, and substitutions of both nodes and edges. We
denote the substitution of two nodes u ∈ V1 and v ∈ V2 by (u → v), the
deletion of node u ∈ V1 by (u → ε), and the insertion of node v ∈ V2 by
(ε→ v), where ε refers to the empty node. For edge edit operations we use a
similar notation. A set {e1, . . . , ek} of k edit operations ei that transform g1

completely into g2 is called an edit path λ(g1, g2) between g1 and g2.
Let Υ(g1, g2) denote the set of all edit paths between two graphs g1 and

g2. To find the most suitable edit path out of Υ(g1, g2), one commonly
introduces a cost c(e) for every edit operation e, measuring the strength of the
corresponding operation. The idea of such a cost is to define whether or not
an edit operation e represents a strong modification of the graph. Given an
adequate cost model, the graph edit distance dλmin

(g1, g2), or dλmin
for short,

between g1 = (V1, E1, µ1, ν1) and g2 = (V2, E2, µ2, ν2) is defined by

dλmin
(g1, g2) = min

λ∈Υ(g1,g2)

∑
ei∈λ

c(ei) .

For our cost model we use a weighting parameter α ∈ [0, 1] that controls
whether the edit operation cost on the nodes or on the edges is more important.
That is, the cost of any node operation is multiplied by α. In the case of edge
operations the costs are multiplied by (1 − α). Thus, a setting of α = 0.5
leads to balanced importance between node and edge operation cost.

In our framework a constant cost for node deletions and insertions is
defined by c(u → ε) = c(ε → v) = τv ∈ R+(u ∈ V1 and v ∈ V2). The
same accounts for the edges (constant cost τe ∈ R+ for edge deletions and
insertions). The cost for node substitutions should reflect the dissimilarity of
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the associated label attributes. In our application the nodes are labelled with
(x, y)-coordinates and we use a weighted Euclidean distance on these labels
to model the substitution cost. Formally, the cost for a node substitution
(u→ v) with µ1(u) = (xi, yi) and µ2(v) = (xj, yj) is defined by

c(u→ v) =
√
β σx(xi − xj)2 + (1− β)σy(yi − yj)2 ,

where β ∈ [0, 1] denotes a parameter to weight the importance of the x- and
y-coordinate of a node, while σx and σy denote the standard deviation of all
node coordinates in the current query graph. The larger the deviation in x-
or y-direction, the more important is the particular direction (and weighted
accordingly).

In order to compute the graph edit distance dλmin
(g1, g2) often A* based

search techniques using some heuristics are employed [57–60]. Yet, graph edit
distance computation based on A* is exponential in the number of nodes of
the involved graphs. Formally, for graphs with m and n nodes we observe a
time complexity of O(mn). This means that for large graphs the computation
of exact edit distance is intractable. In fact, graph edit distance belongs to
the family of Quadratic Assignment Problems (QAPs) [61], which in turn
belong to the class of NP-complete problems2.

QAPs basically consist of a linear and a quadratic term which have to be
simultaneously optimised. In case of graph edit distance, the linear term of
QAPs can be used to model the sum of node edit costs, while the latter is
commonly used to represent the sum of edge edit costs (see [39] for further
details). The graph edit distance approximation framework introduced in [46]
reduces the QAP of graph edit distance computation to an instance of a
Linear Sum Assignment Problem (LSAP). Similar to QAPs, LSAPs deal with
the question how the entities of two sets can be optimally assigned to each
other.

For solving LSAPs, a large number of efficient algorithms exist (see [62]
for an exhaustive survey). The time complexity of the best performing exact
algorithms for LSAPs is cubic in the size of the problem. Hence, LSAPs can
be – in contrast with QAPs – quite efficiently solved.

Basically, the framework proposed in [46] optimally solves the LSAP which
can be stated on assignments of local structures (viz. nodes and adjacent

2That is, an exact and efficient algorithm for the graph edit distance problem can not
be developed unless P = NP.
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edges). This assignment can eventually be used to infer a complete set of
globally consistent node and edge edit operations, i.e. we can derive a valid
edit path λ ∈ Υ(g1, g2). The sum of costs of this – not necessarily optimal –
edit path gives us an upper bound on the exact distance dλmin

[63]. We refer
to the approximated distance as dBP from now on.

Finally, dBP is normalised by the sum of the maximum cost edit path
between the query graph q and the document word graph g, i.e. the sum of
the edit path that results from deleting all nodes and edges of q and inserting
all nodes and edges in g. In case a query consists of a set of graphs {q1, . . . , qt}
that represents the same keyword, the normalised graph edit distance is given
by the minimal distance achieved on all t query graphs.

3.2. Ensemble Methods for Graphs

Rather than representing word images by a single graph representation, one
might represent both the query graph q as well as the document graphs gi ∈ G
with all graph representations as introduced in Subsection 2.2. Hence, a query
word is actually represented by four graphs qK , qG, qP , and qS, i.e. one query
graph per graph formalism (Keypoint (K), Grid (G), Projection (P), and
Split (S)). The same accounts for all document words which are now rep-
resented by four sets of document graphs {GK , GG, GP , GS}. Hence, rather
than matching one query graph against one document graph, one could also
match qK , qG, qP , and qS with the corresponding set of document graphs.
Consequently, four graph dissimilarities are obtained for each pair (q, g) of a
query word q and a document word g. Based on these dissimilarities, we use
different combination strategies in order to build a KWS ensemble.

The first strategy considers all four graph extraction methods by either
choosing the minimal, maximal, or mean GED returned on the four repre-
sentations (termed dmin, dmax, and dmean from now on). Formally, for one
query word q represented by qK , qG, qP , and qS and one document word g
represented by gK , gG, gP , and gS we define

dmin(q, g) = min
i∈{K,G,P,S}

dBP(qi, gi) ,

dmax(q, g) = max
i∈{K,G,P,S}

dBP(qi, gi) ,

dmean(q, g) =
1

4

∑
i∈{K,G,P,S}

dBP(qi, gi) .
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The second strategy only considers the two most promising individual graph
extraction methods as proposed in [49], viz. Keypoint and Projection. Two
different weighted sums are applied to combine the respective distances with
each other (termed dsumα and dsummap from now on). Formally,

dsumα(q, g) = γ dBP(qK , gK) + (1− γ) dBP(qP , gP ) ,

dsummap(q, g) = δ dBP(qK , gK) + ε dBP(qP , gP ) ,

where γ denotes a user defined weighting factor, and δ and ε denote weighting
factors based on the mean average precision of the individual KWS systems
operating on Keypoint and Projection graphs, respectively.

The individual distances dBP (on single representations) as well as all
combinations can now be used to create retrieval indices for KWS (for the
remainder of this section d stands for single distances or any of the five
combined distances).

3.3. Computing the Retrieval Index

Keyword spotting is either based on a local or global threshold scenario.
In a real world scenario, local thresholds are used in case of a vocabulary
of common keywords, while a global threshold is used for arbitrary out-of-
vocabulary keywords. Generally, global thresholds are regarded as the more
realistic but also more difficult scenario. That is, in case of local thresholds,
the KWS accuracy is independently measured for every keyword, while in
case of global thresholds, the KWS accuracy is measured for every keyword
with one single threshold. In the following, we introduce two retrieval indices
for local and global thresholds, respectively.

First, d is used to derive a retrieval index for local thresholds by

r1(q, g) = −d(q, g) .

Second, the distance d is normalised to form a retrieval index r2 for
global thresholds by using the average distance of a query graph q to its
k nearest document graphs, i.e. the document graphs {g(1), . . . , g(k)} with
smallest distance values to q. Formally, we use

d̄k(q) =
1

k

k∑
i=1

d(q, g(i)) .
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to derive

d̂(q, g) =
d(q, g)

d̄k(q)
.

Eventually, d̂ is used to derive the second retrieval index by

r2(q, g) = −d̂(q, g) .

Rather than defining k as a constant, we dynamically adapt k to every
query graph q. Formally, we define k such that the distance d(q, g(k)) of q to
its k-th nearest document graph g(k) is equal to

d(q, g(k)) = d̄m(q) + θ (d̄N(q)− d̄m(q)) ,

where m ∈ N and θ ∈ [0, 1] are user defined parameters and N refers to the
number of document graphs. The value of d̄m(q) refers to the mean distance
of q to its m nearest neighbours and d̄N(q) refers to the mean distance to all
document graphs available. This sum reflects the level of dissimilarities of q to
the graphs in its direct neighbourhood. If the sum is large, k is automatically
defined large, too. This in turn increases d̄k(q), which ultimately increases
the scaling for d̂.

4. Experimental Evaluation

4.1. Datasets

The experimental evaluation is carried out on two well known manuscripts,
viz. George Washington (GW)3 and Parzival (PAR)4, as well as two doc-
uments of a very recent KWS benchmark competition5, viz. Alvermann
Konzilsprotokolle (AK) and Botany (BOT). In Fig. 2 small excerpts of all
four documents are shown.

3George Washington Papers at the Library of Congress, 1741-1799: Series 2, Letterbook
1, pp. 270-279 & 300-309, http://memory.loc.gov/ammem/gwhtml/gwseries2.html

4Parzival at IAM historical document database, http://www.fki.inf.unibe.ch/

databases/iam-historical-document-database/parzival-database
5Alvermann Konzilsprotokolle and Botany at ICFHR2016 benchmark database, http:

//www.prhlt.upv.es/contests/icfhr2016-kws/data.html
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(a) George Washington (GW) (b) Parzival (PAR)

(c) Alvermann Konzilsprotokolle (AK) (d) Botany (BOT)

Figure 2: Exemplary excerpts of the two datasets.

• GW consists of twenty pages stemming from handwritten letters written
by George Washington and his associates during the American Revolu-
tionary War in 17556. The letters are written in English and contain
only minor signs of degradation. The variations in the writing style is
low, even though different writers have been involved in their creation.

• PAR consists of 45 pages stemming from handwritten letters written
by the German poet Wolfgang Von Eschenbach in the 13th century7.
The manuscript is written in Middle High German on parchment with
markable signs of degradation. The variations in the writing are low,
even though three different writers have been involved.

• AK consists of 18,000 pages stemming from handwritten minutes of
formal meetings held by the central administration of the University
of Greifswald in the period of 1794 to 1797. The notes are written in

6George Washington Papers at the Library of Congress, 1741-1799: Series 2, Letterbook
1, pp. 270-279 & 300-309, http://memory.loc.gov/ammem/gwhtml/gwseries2.html

7Parzival at IAM historical document database, http://www.fki.inf.unibe.ch/

databases/iam-historical-document-database/parzival-database
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German and contain only minor signs of degradation. The variations in
the writing styles is rather low.

• BOT consists of more than 100 different botanical records made by
the government in British India in the period of 1800 to 1850. The
records are written in English and contain certain signs of degradation
and especially fading. The variations in the writing style are noticeable
especially with respect to scaling and intraword variations.

Note that only a subset of the datasets is used in case of BOT and
AK. Moreover, the word segmentation on these datasets is imperfect [52],
and thus, an additional image preprocessing step is applied to filter small
connected components. In Fig. 3 three example words per dataset and their
corresponding graph representations are shown8.

4.2. Reference Systems

We compare the proposed graph-based KWS approach with two types of
reference systems, viz. four different template-based systems using DTW [14–
16, 19], and three learning-based KWS system using SVM and CNN [28, 35, 36].
Note that reference results of the DTW-based systems are available on GW
and PAR only. Likewise, the results of the learning-based reference systems
are available on BOT and AK only.

DTW optimally aligns (warps) two sequences of features vectors X =
{x1, . . . ,xm} and Y = {y1, . . . ,yn} along one common time axis using a
dynamic programming approach. In the current case these feature vectors
either consist of nine different geometrical features [14], Histogram of Oriented
Gradient features [15, 16], or Deep Learning features [19]. Finally, the
alignment cost d(x,y) between each vector pair (x,y) ∈ Rn × Rn is given
by the squared Euclidean distance. The DTW distance D(X, Y ) between
two sequences of feature vectors is then given by the minimum alignment
cost found by dynamic programming [5]. For speeding up the alignment a
Sakoe-Chiba band that constrains the warping path [64] is applied.

We take three state-of-the-art learning-based methods into account, viz.
CVCDAG [28], PRG [35], and QTOB [36]. CVCDAG is based on PHOC
features used in conjunction with an SVM [28]. PHOC is a word string
embedding approach based on five different splitting levels, i.e. on level n a

8Graphs are available at http://www.histograph.ch
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Keypoint Grid Projection SplitOriginal Preprocessed

(a) George Washington (GW)

Keypoint Grid Projection SplitOriginal Preprocessed

(b) Parzival (PAR)

Keypoint Grid Projection SplitOriginal Preprocessed

(c) Alvermann Konzilsprotokolle (AK)

Keypoint Grid Projection SplitOriginal Preprocessed

(d) Botany (BOT)

Figure 3: Different graph representations of the four datasets.
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word image is split into n subparts for which a histogram for the number
of character occurrences is created. In PRG, the same features are used to
train a CNN, the so-called PHOCNet [35]. Another CNN is used in QTOB
by means of a triplet network approach [36].

4.3. Experimental Setup

All parameters are optimised on ten different keywords (with different
word lengths), as shown in Fig. 4. To this end, we define a validation set
that consists of 10 random instances per keyword and 900 additional random
words (in total 1,000 words). The details regarding the parameter optimisation
are thoroughly described in Appendix A.

(a) George Washington (GW)

(b) Parzival (PAR)

(c) Alvermann Konzilsprotokolle (AK)

(d) Botany (BOT)

Figure 4: Selected keywords of the four datasets used for optimisation.

The optimised systems are eventually evaluated on the same training
and test sets as used in [7] and [52] (for all datasets). All templates of a
keyword present in the training set are used for KWS. In Table 2 a summary
of all datasets can be found. In Subsection 4.4 we first compare our novel
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Table 2: Number of keywords and number of word images in the training and test sets of
the four datasets.

Dataset Keywords Train Test

GW 105 2,447 1,224
PAR 1,217 11,468 6,869
BOT 150 1,684 3,380
AK 200 1,849 3,734

framework with the four template-based systems on GW and PAR. Eventually,
the comparison with the three learning-based systems on AK and BOT is
carried out in Subsection 4.5.

For measuring the KWS performance of the different systems we compute
the Recall (R) and Precision (P)

R =
TP

TP + FN
and P =

TP

TP + FP
,

which are both based on the number of True Positives (TP), False Posi-
tives (FP), and False Negatives (FN).

Both recall and precision can be computed for two types of thresholds,
viz. local and global thresholds. In the case of local thresholds, the KWS
performance is measured for each keyword individually and then averaged over
all keyword queries. In the case of global thresholds, the same thresholds are
used for all keywords. This scenario is more practical for a real-world KWS
system but requires individual keyword scores to be comparable with each
other. Hence, the global threshold scenario is more challenging in general 9.

Eventually, two metrics are used to evaluate the quality of the KWS
system. For global thresholds, the Average Precision (AP) is measured,
which is the area under the Recall-Precision curve for all keywords given a
single (global) threshold. For local thresholds, we compute the Mean Average
Precision (MAP), that is the mean over the AP of each individual keyword
query. The values are computed using the trec eval10 software.

9Global threshold results are not available for BOT and AK as the ICFHR2016 compe-
tition is based on local thresholds only.

10http://trec.nist.gov/trec_eval
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4.4. Graph-based vs. Template-based KWS

The novel graph-based ensemble for KWS is compared on the independent
test set with four DTW-reference systems for both benchmark datasets
GW and PAR. Note that the evaluation of the single graph representations,
underlying our ensemble, can be found in Appendix B. The MAP (for
local thresholds), the AP (for global thresholds) as well as their average
are given in Table 3. These results are also reflected in Fig. 5 where the
recall-precision curves are plotted for local and global thresholds on GW and
PAR, respectively.

Table 3: Mean average precision (MAP) using local thresholds, average precision (AP)
using a global threshold as well as their average for all graph-based KWS systems in
comparison with four DTW-reference systems according to [19]. The first, second, and
third best systems are indicated by (1), (2), and (3).

GW PAR

Method MAP AP MAP AP Average

Reference (Template)

DTW’01 [14] 45.26 33.24 46.78 50.67 43.99
DTW’08 [15] 63.39 41.20 47.52 55.82 51.98
DTW’09 [16] 64.80 43.76 73.49 69.10 62.79
DTW’16 [19] 68.64 56.98 (3) 72.38 72.71 (3) 67.68 (3)

Graph (Ensemble)

min 70.56 (1) 56.82 67.90 62.33 64.40
max 62.58 47.94 67.57 50.59 57.17
mean 69.16 (3) 57.11 (2) 79.38 (1) 73.77 (1) 69.85 (1)
sumα 68.44 55.78 74.51 (3) 68.12 66.71
summap 70.20 (2) 57.38 (1) 76.80 (2) 73.56 (2) 69.48 (2)

We observe that the ensemble method mean achieves in two out of four
cases the best and and in two cases the second and third best result, while
summap achieves once the best result and three times the second best result.
Hence, we conclude that mean and summap are the best performing ensembles.
On the other hand, we observe that the ensemble max is not a well suited
strategy in our specific scenario as it achieves the worst result of all ensembles
in all four cases.

Overall, we see a clear performance improvement of our graph- and
ensemble based approach when compared to state-of-the-art DTW-based
reference systems. Especially, the ensemble methods mean and summap

achieve a higher accuracy on both datasets and threshold scenarios. This is
in particular interesting as two reference systems [16, 19] are using advanced
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(b) Global - George Washington (GW)
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(c) Local - Parzival (PAR)
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(d) Global - Parzival (PAR)

Figure 5: Comparing the keyword spotting performance for both local and global thresholds
on both datasets using recall-precision curves.
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feature sets,11 while our graph-based methods are based on coordinate labels
only.

A qualitative evaluation of our graph ensemble is given in Fig. 6, where
the top ten results for one random keyword of each dataset is given (using
the ensemble method min). On GW we observe that the first retrieved
keyword (searched) does not correspond to the actual query word (wanted).
Yet, the word images are visually similar to each other. The single instance
available is retrieved second. Similar effects of false positives can be observed
on PAR, where the first retrieved keyword does not correspond to the actual
query word. Note the slight differences in orthography, which highlight a
particular challenge of the medieval PAR dataset.

(a) George Washington

(b) Parzival

Figure 6: Top ten results for given keywords using the min ensemble method.

We provide an empirical performance evaluation on the GW dataset in
Table 4. We show the average matching time per keyword for all four DTW-
based systems and two graph-based systems, i.e. the proposed cubic time
framework BP and a more recent quadratic time algorithm Hausdorff Edit
Distance (HED) [65]. Comparing the average matching time per keyword for
BP with the DTW methods, we observe a clear performance loss. However,
if we compare the average matching time for HED, we see lower matching
times in three out of four cases. These results highlight the potential of graph
matching also with a view to runtime considerations. Only DTW’01, where
low dimensional feature vectors are used, is faster than HED.

11In particular, [19] performs an unsupervised feature learning step using unlabelled
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Table 4: Average matching time per graph pair in ms.

Reference Systems ms

DTW’01 [14] 0.7
DTW’08 [15] 5.6
DTW’09 [16] 10.2
DTW’16 [19] 7.7

Graph Matching Algorithms

BP 303.0
HED [65] 3.2

4.5. Graph-based vs. Learning-based KWS

Last but not least, we provide a comparison of graph-based ensemble
methods12 with recent results of learning-based approaches achieved on the
ICFHR2016 benchmark dataset [52]. Note that the evaluation of the single
graph representations, underlying our ensemble, can be found in Appendix B.
In Table 5, the MAP on both datasets as well as their average is given for
all graph-based ensemble methods and the learning-based reference systems.
In case of graph-based ensemble methods, we observe that the ensemble
methods mean, sumα, and summap outperform min and max. In case of the
learning-based reference systems, we observe that the PHOCNet leads to an
astonishing accuracy. However, the ensemble method sumα achieves almost
the same overall KWS accuracy as the learning-based PRG-approach. In
particular, on the AK dataset our graph-based methods can keep up or even
outperform PRG.

We conclude that our graph-based methods can keep up with most
state-of-the-art learning-based methods. This is especially remarkable as
these reference methods are based on more advanced features than our ap-
proach (e.g. PHOC), and use learning-based algorithms (i.e. SVM, and CNN).
In particular, some of the reference systems need relatively large training sets,
i.e. labelled training data (e.g. PRG achieves lower rates on penalised/weighted
MAP, see [52] for details). Yet, the manual labelling of historical handwriting
with the help of human experts is a labour- and cost-intensive process. This
makes our novel graph-based methods especially valuable as only a single
instance of a keyword is required.

data.
12For this comparison, we only consider the two most promising graph representations

Keypoint and Projection.
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Table 5: Mean average precision (MAP) using local thresholds for graph-based KWS
systems in comparison with three state-of-the-art learning-based reference systems of the
ICFHR2016 competition [52]. The first, second, and third best systems are indicated by
(1), (2), and (3).

Method AK BOT Average

Reference (Learning)

CVCDAG [28] 77.91 75.77 (2) 76.84 (2)
PRG [35] 96.05 (1) 89.69 (1) 92.87 (1)
QTOB [36] 82.15 54.95 68.55

Graph (Ensemble)

min 82.75 65.19 73.97
max 82.09 67.57 74.83
mean 84.25 (3) 68.88 (3) 76.57
sumα 84.77 (2) 68.77 76.77 (3)
summap 84.25 (3) 68.88 (3) 76.57

To conclude this section, we provide a qualitative comparison in Fig. 7,
where the top ten results for one random keyword of each dataset is given (us-
ing the ensemble method min). On the AK dataset, we observe false positives
on the first three retrieval results for the query Schema. However, all false
positives are visually very similar to the actual query word. On the BOT
dataset, a similar effect can be observed for the query Division and the false
positives Revenue. Note the additional challenge of KWS due to the imperfect
word segmentation.

(a) Alvermann Konzilsprotokolle (AK)

(b) Botany (BOT)

Figure 7: Top ten results for given keywords using the min ensemble method.
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5. Conclusion and Future Work

A novel graph-based framework is presented for the task of keyword
spotting in historical handwritten documents. The proposed approach allows
to search arbitrary keywords in handwritten documents, which is particularly
interesting for historical documents where an automatic transcription is
not feasible or not sufficiently accurate. The basic algorithm for keyword
spotting is template-based and can thus be used without a priori learning of a
statistical model. Hence, no labour- and time-intensive labelling of historical
handwriting is necessary. This makes the presented graph-based framework
not only more universally applicable but also more flexible when compared
to learning-based approaches.

To represent individual words we make use of four different graph extrac-
tion methods. The first extraction method is based on keypoints detected
in a word image, which are eventually represented by nodes, while the edges
are represent the line strokes between two keypoints. The second extraction
method is based on grid-wise segments of a word image, which are eventually
represented by nodes, while the edges model a minimal spanning tree on
the adjacency structure of these segments. The third and fourth extraction
method make both use of vertical and horizontal projection profiles to segment
a word image. The resulting segments are then represented by nodes, while
edges are inserted between nodes based on the line strokes between segments.
The actual keyword spotting is then based on combined graph dissimilarities
returned by bipartite graph matching.

For the experimental evaluation the proposed method is first compared
with four state-of-the-art template-based DTW reference systems on two
well-known benchmark datasets. For both datasets the task of keyword
spotting is evaluated using both local and global thresholds. On both datasets
and thresholds the novel graph-based methods clearly outperform all of the
reference systems. Moreover, our novel graph-based ensemble method can keep
up or even outperform several learning-based approaches on the very recent
ICFHR2016 benchmark datasets. This indicates the power and flexibility of
graphs in conjunction with template- and ensemble-based KWS.

A limitation of the proposed approach is the need for a segmentation of
document pages into single word images. In future work we therefore aim at
extending our word-based approach to a line-based approach, where a query
graph can be found in a line (represented as a line graph) by means of error-
tolerant subgraph isomorphism. Moreover, the current graph representations
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and edit functions are based on the Euclidean space R2. More meaningful
label functions for both nodes and edges (based on texture descriptors for
instance) could further improve the performance of our keyword spotting
framework. Finally, the performance of the novel framework could be improved
w.r.t. runtime by graph matching algorithms with a lower computational
complexity [65] or other heuristics [66, 67].
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Appendix A. Optimisation of the Parameters

The optimisation of the parameters is conducted in four subsequent steps.
The first two steps are actually used for optimising the systems based on local
thresholds, while the third step is solely used for global thresholds. Note that
global thresholds are optimised for GW and PAR only, as the ICFHR2016
benchmark (i.e. AK and BOT) is based on local thresholds only. Finally, the
fourth step is used for the ensemble methods only.

First step: The parameters for each graph extraction algorithm are op-
timised with respect to the MAP on the validation set using different node
and edge deletion/insertion costs τv = τe = {1, 4, 8, 16, 32}, fixed weighting
parameters α = β = 0.5 and retrieval index r1. In Table A.6, an overview
of the tested parameters is given for all four datasets. The best performing
parameters are marked with an asterisk.

Second step: Using the optimal parameters for each graph extraction
method, the parameters for graph edit distance are further optimised. That
is, we evaluate the 25 pairs of constants for node and edge deletion/insertion
costs (τv = τe = {1, 4, 8, 16, 32}). In combination with the weighting param-
eters α = {0.1, 0.3, 0.5, 0.7, 0.9} and β = {0.1, 0.3, 0.5, 0.7, 0.9}. Hence, we
evaluate a total of 625 parametrisations per graph extraction method and
dataset (resulting in 5,000 settings in total). In Table A.7 the optimal cost
function parameters are given for all graph extraction algorithms.

Third step: For KWS systems using global thresholds we employ retrieval
index r2 rather than r1. Hence, the parameter m and threshold scaling
factor θ are individually optimised for each system (N is defined by the
number of document graphs). We tested 10,000 parameters pairs (m, θ) with
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Table A.6: Parameter optimisation for the graph extraction algorithms during the first
step of optimisation. Optimal parameters are marked with an asterisk.

Method Parameter

GW Keypoint D = {4∗, 6, 8, 10, 12}
Grid w = {6∗, 8, 10, 12, 14} × h = {6∗, 8, 10, 12}
Projection Dv = {4∗, 6, 8, 10} × Dh = {4, 6∗, 8, 10}
Split Dw = {4, 6∗, 8, 10} × Dh = {4∗, 6, 8, 10}

PAR Keypoint D = {2∗, 4, 6, 8, 10, 12}
Grid w = {4∗, 6, 8, 10, 12} × h = {4∗, 6, 8, 10}
Projection Dv = {2∗, 4, 6, 8, 10} × Dh = {4∗, 6, 8, 10}
Split Dw = {2∗, 4, 6, 8, 10} × Dh = {4∗, 6, 8, 10}

AK Keypoint D = {16∗, 20, 24, 28, 32, 36}
Projection Dv = {10, 12, 14, 16∗} × Dh = {10∗, 12, 14, 16}

BOT Keypoint D = {16∗, 20, 24, 28, 32, 36}
Projection Dv = {10, 12, 14∗, 16} × Dh = {10, 12∗, 14, 16}

Table A.7: Optimal cost function parameter for graph edit distance computation.

GW PAR AK BOT

Method τv τe α β τv τe α β τv τe α β τv τe α β

Keypoint 4 1 0.5 0.1 4 4 0.5 0.3 16 16 0.5 0.1 32 32 0.3 0.1
Grid 4 1 0.7 0.1 4 1 0.7 0.5 - - - - - - - -
Projection 4 1 0.5 0.1 4 1 0.5 0.5 8 32 0.7 0.1 8 32 0.9 0.3
Split 4 1 0.5 0.1 4 1 0.3 0.3 - - - - - - - -

Table A.8: Optimal m and θ for retrieval index r2.

GW PAR

Method m θ m θ

Keypoint 60 0.02 1,000 0.20
Grid 90 0.01 820 0.19
Projection 60 0.03 980 0.20
Split 80 0.03 990 0.18

min 70 0.08 10 0.72
max 40 0.10 10 0.61
mean 60 0.06 10 0.64
sumα 70 0.04 10 0.61
summap 90 0.02 10 0.61
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m ∈ {10, 20, . . . , 990, 1000} and θ ∈ {0.01, 0.02, . . . , 0.99, 1.00}. In Table A.8,
the optimal parameter settings for r2 are given for all systems.

The differences of the optimal parameter settings are due to different
distributions of the graph edit distances for GW and PAR, respectively. In
case of GW, the graph edit distances for global thresholds are optimised by
considering a rather large neighbourhood m and small weighting factor θ. In
case of PAR, we can observe the opposite case.

Fourth step: The weighting factor γ ∈ {0.1, . . . , 0.9} for the ensemble
sumα is the sole parameter that needs to be optimised (all other ensemble
strategies need no parameter tuning).

In Table A.9, the MAP is given for the tested parameter settings for γ on
all benchmark datasets. Note that the best performing parameter setting is
indicated in bold face.

Table A.9: Optimal γ for the sumα ensemble.

GW PAR AK BOT

γ MAP MAP MAP MAP

0.1 73.21 100.00 30.65 51.20
0.2 73.34 99.19 30.74 51.38
0.3 75.23 99.19 30.25 51.56
0.4 71.84 99.19 29.74 51.74
0.5 71.75 99.19 29.12 50.06
0.6 71.34 96.33 29.49 50.50
0.7 72.00 94.65 29.91 49.73
0.8 72.10 94.28 28.59 46.49
0.9 72.05 93.95 27.91 46.71

Appendix B. Results Graph-based Representations

We compare the novel graph representations with each other in Table B.10.
We observe that either Keypoint or Projection achieve the best results
among all graph extraction methods.
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